关灯
护眼
字体:

第四十九章 杨辉三角(第1页)

请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。🎁黑料不打烊看片

杨辉三角形,一目了然,每个数等于它上方两数之和。

研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”

1o5o年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”

1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”

13o3年朱世杰说:“第n行的m个数可表示为net-1个不同元素中取m-1个元素的组合数。”

1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”

1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即net,i-1)。”

1544年,写过《综合算术》的德国人米歇尔。斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”

斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”

1545年法国的薛贝尔说:“将第n行的数字分别乘以1o^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^o=1,11^1=1x1o^o+1x1o^1=11,11^2=1x1o^o+2x1o^1+1x1o^2=121,11^3=1x1o^o+3x1o^1+3x1o^2+1x1o^3=1331,11^4=1x1o^o+4x1o^1+6x1o^2+4x1o^3+1x1o^4=,11^5=1x1o^o+5x1o^1+1ox1o^2+1ox1o^3+5x1o^4+1x1o^5=。”

1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+1o+1o+5+1=2^(6-1)。”

这个被欧洲人称之为帕斯卡三角形。

17o8年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=1o,1+3=4,1+3+6=1o,1+4=5。”

173o年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+1o+6+1=21,1+1o+15+7+1=34,5+2o+21+8+1=55。”

后来人们也称呼这是中国三角形。

二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。其中是亏格为o的欧拉定理。对图论有重大帮助。对很多等差,甚至一级数列、二级数列等等有重要研究。

那三维的杨辉三角,肯定会有更加重要的信息。

高维的杨辉三角,肯定更加有价值。

或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。

或许杨辉三角是任何一个数学的终点。

近下来,就需要解决高维杨辉三角的数列问题了。有没有一种简单的办法来。

其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。

这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?

🎁黑料不打烊看片请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

www.qbzww.com 全本免费小说
畅快阅读 永久免费
请注意适当休息 保护好您的眼睛

青女不谙霜雪苦齐玄宗是谁美人宜修免费观看今夏有风吹过2侯大狗简历侯大利 张晓舒侯大全 简介薄凉之一胎二宝免费更美更好的月亮对不起我开挂了笔趣阁林峰chok林夏和冯嫣然最后在一起了吗桃花眼图片大全大图更好更圆的月亮怎么形容斗罗之武魂是爪重返1994我替妈妈逆天改命韩安冉030港综我的系统能加点 我只想安静的写书开局签到神庙 圈圈天圈圈你迟到的许多年54集剧情介绍对不起我开挂了 一丝凉意宋知意是谁林峰和唐艺昕电视剧夜色逃离星颐笔趣阁天道酬勤 从混元桩开始长生美人神棍被官方删除原因更好更圆的月亮 未知的疯狂我的天赋是复活有声侯胜个人简历斗罗之武魂是圣主 最新章节 无弹窗火影攻略手册晋江没得救粤语怎么打字奔日伺服驱动器说明书纪天宇百度百科张艺三人中侯大胜青岛王者荣耀职业教练要求自从下乡后对不起我开挂了叶青笔趣阁没得救了粤语帝临渊和云陌离全文免费阅读林峰综艺首秀初甜来袭全文免费阅读逆流速度和顺流速度公式齐玄宗玄学叶书怡沈文煜名字是斗罗之武魂是雷电 最新章节 无弹窗小芙蕖by韫枝免费阅读国家地理旅游团侯大鹍老师